
Investigation of the Latent Space of Stock Market Patterns with
Genetic Programming

Sungjoo Ha
Seoul National University
Seoul, Republic of Korea
shurain@soar.snu.ac.kr

Sangyeop Lee
Seoul National University
Seoul, Republic of Korea
leesy714@soar.snu.ac.kr

Byung-Ro Moon
Seoul National University
Seoul, Republic of Korea

moon@snu.ac.kr

ABSTRACT
We suggest a use of genetic programming for transformation from
a vector space to an understandable graph representation, which is
part of a project to inspect the latent space in matrix factorization.
Given a relation matrix, we can apply standard techniques such as
non-negative matrix factorization to extract low dimensional latent
space in vector representation. While the vector representation of
the latent space is useful, it is not intuitive and hard to interpret.
The transformation with the help of genetic programming allows
us to better understand the underlying latent structure. Applying
the method in the context of a stock market, we show that it is
possible to recover the tree representation of technical patterns
from a relation matrix. Leveraging the properties of the vector
representations, we are able to find patterns that correspond to
cluster centers of technical patterns. We further investigate the
geometry of the latent space.

CCS CONCEPTS
• Computing methodologies→ Non-negative matrix factor-
ization; Genetic programming;

KEYWORDS
matrix factorization; latent spacemodels; technical patterns; genetic
programming;
ACM Reference Format:
Sungjoo Ha, Sangyeop Lee, and Byung-Ro Moon. 2018. Investigation of
the Latent Space of Stock Market Patterns with Genetic Programming. In
GECCO ’18: Genetic and Evolutionary Computation Conference, July 15–19,
2018, Kyoto, Japan. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3205455.3205493

1 INTRODUCTION
Dealing with the relationship between different types of objects is
an interesting area of research. In the context of blog subscription,
people subscribe to different sites, creating a relationship between
them.When dealing with consumers in online markets, understand-
ing the preferences of users is a crucial aspect of the enterprise.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’18, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5618-3/18/07. . . $15.00
https://doi.org/10.1145/3205455.3205493

Usually, we can infer such preferences from the relationship be-
tween users and items. In stockmarkets, we are interested in finding
attractive patterns and further understanding the relationship be-
tween patterns and specific stocks. Such relationship often has
underlying structures that govern the collective behavior of the
objects which, unfortunately, is seldom observable.

One well-known approach to finding the latent structure in a
given relationship is to express the relationship using a matrix and
applying matrix factorization techniques. In collaborative filtering
problems, low-rank matrix factorization approaches have been ap-
plied successfully. Given the ratings for movies by users, a relation
matrix between users and movies can be constructed. By decom-
posing the matrix into two smaller matrices, we can extract the
latent representation of users and movies. Given the latent repre-
sentation, we can predict the unobserved relationship between a
user and an item. The rationale is that if users’ preferences and
movies’ characteristics share some common qualities among them,
we can assume that they will be close to one another in the latent
space and this adjacency helps predict the unobserved behaviors.
One problem with the matrix factorization approach is that it is
hard to understand the latent representation. We can speculate
that the latent space captures differing aspects of the relationship.
Nevertheless, without further investigation of the latent space, it
remains a speculation.

Oneway to address the problem of interpretability is to introduce
side information. Frequently, we have additional information apart
from the relationship given as a matrix. For example, in movie
recommendation, we usually know the characteristics of a movie
such as the genre of the movie, the list of starring actors, the basic
plot of the movie, etc. A viable approach is to make use of the
side information to build a classifier that takes them as inputs and
predicts the relationship. We can apply this approach to study the
latent structure found by matrix factorization models.

In this paper, we use side information and genetic programming
(GP) to transform the latent representation into an interpretable
representation. Specifically, we transform the vector representa-
tion obtained from low-rank matrix factorization to corresponding
tree representation. We study the relationship between technical
patterns and ⟨stock, date⟩ pairs in the context of stock markets.
Given black box technical patterns, we can create a relation matrix
between patterns and ⟨stock, date⟩ pairs as a binary matrix. Once
posed as a relational data it is straightforward to extract and ana-
lyze the latent structure by applying the proposed method. Using
various technical indicators as side information for the given rela-
tionship, we transform the latent vector representations of black
box patterns into pattern trees.

https://doi.org/10.1145/3205455.3205493
https://doi.org/10.1145/3205455.3205493
https://doi.org/10.1145/3205455.3205493

GECCO ’18, July 15–19, 2018, Kyoto, Japan Sungjoo Ha, Sangyeop Lee, and Byung-Ro Moon

Key aspects of the paper are as follows:

• We pose the problem of analyzing black box patterns of stock
markets using the matrix factorization model. By applying
our proposed method, latent space representations induced
by the factorization of a relation matrix is transformed into
tree representations (Section 3).

• We show that the tree representation corresponding to la-
tent space vectors can shed some light on what the matrix
factorization method does. This approach has an additional
benefit of yielding tree representations that allow us to make
decisions on previously unseen data (Section 4).

2 BACKGROUND
Sometimes it is helpful to assume that observations are correlated
because of some underlying structures that cause them. We model
this by introducing hidden, or latent, variables that are unobserved.
A problem that is particularly interesting is finding the latent struc-
ture when dealing with relational data. A famous example of latent
structure approach to relational data is the winning entry for Net-
flix challenge [2]. In Netflix challenge, one is asked to predict the
unobserved relationship between users and movies using the ob-
served relation matrix. The winning entry for the challenge used
an ensemble of matrix factorization models, neighborhood models,
and restricted Boltzmann machines [9][20]. Inspecting the latent
space gives us insights into how matrix factorization models work.
Koren et al. [10] examine the first few most important dimensions
of the latent space. By exploring the space, they were able to identify
that the first axis has, on one side, “lowbrow comedies and horror
movies” and, on another side, “drama and comedy with serious
undertones and strong female leads.”

Instead of relying on the latent structure of the relation matrix,
one can take an advantage of attributes or characteristics of entities.
In recommender systems community, this approach is known as
content-based recommendations. Content-based approach to rec-
ommendation has several benefits such as avoiding the cold-start
problem, and ability to recommend to users with unique tastes. One
important aspect of the content-based approach is the capability
to give an explanation of recommended items using the attributes
of the item. While there are many benefits of the content-based
approach, there are also negative sides to it as well. One problem
is the hardness of exploiting other users’ preferences. There are
researches that combine both approaches. Xu et al. [22] explored
social networks using infinite hidden relational models where they
predicted entity attributes and relationships between entities. By
combining user/movie attributes and ratings in MovieLens data,
they outperformed the traditional low-rank matrix factorization
models.

Evolutionary computation has been applied to collaborative fil-
tering problems [3]. Fong et al. [6] directly encoded different fea-
tures such as demographic attributes and movie attributes into a
chromosome and used genetic algorithms to search for suitable rec-
ommendations. Guimarães et al. [7] proposed a framework called
GUARD, that uses GP to create ranking functions taking multiple
measures for recommendations into account. Anand [1] used GP to

convert user-item relation matrix to a user-feature matrix by learn-
ing functions which map ratings for subsets of items to individual
features.

The use of NMF together with evolutionary computation has
been attracting attention lately. Liskowski and Krawiec [15] has
used NMF to derive multiple objectives for solving problems with
GP. Similar approach was also applied to coevolutionary settings by
Liskowski and Jaśkowski [14] where they compute only a fraction
of interactions and utilized NMF to impute the missing values for
the problem of learning position evaluation in Othello.

Mining interesting patterns from stock markets has been a fo-
cus of research for some time [18][13][8]. For example, Lee and
Moon [12] applied GP for mining attractive technical patterns using
a modular GP. While explicitly mining patterns using side infor-
mation has been a usual approach, there are also researches that
exploit the latent structure induced by matrix factorization [16][23].
Drakakis et al. [5] looked into the relationship between closing
prices of Dow Jones stocks on a particular day and applied the non-
negative matrix factorization (NMF) model to extract the latent
structure. Upon examining the latent representation of stocks, clus-
ters roughly corresponding to market sectors were found. Wong
et al. [21] predicted the directional movement of stock prices by
aligning the latent space induced by multiple stock prices and news
articles. Another latent variable approach is illustrated in Doyle
and Elkan [4] where they applied topic models to financial data.

3 PROBLEM STATEMENT
Given a relation matrix, we perform matrix factorization to uncover
the latent space representation of patterns. We evolve GP trees
to mimic the behavior of certain patterns using side information.
Once we have the tree representation corresponding to the latent
space representation, we can better interpret the latent space. The
resulting tree representation essentially acts as a classifier which
we can employ to classify previously unseen data. Figure 1 depicts
the procedure as a whole.

3.1 Matrix Factorization
Given a bipartite relational graph, we create a matrix whose en-
tries indicate a relationship between two groups. We consider the
relation matrix of technical patterns and ⟨stock, date⟩ pairs. Here
we refer to a technical pattern as a black box classifier that yields
a Boolean value for a certain stock on a certain day. This Boolean
value is to be understood as whether the specific ⟨stock, date⟩ pair
matches the criteria of the technical pattern or not. If we are given
such technical patterns, we can match them against the data at
hand which creates a binary matrix where the rows represent the
patterns and the columns represent the ⟨stock, date⟩ tuples. Thus,
a decomposition of the match occurrence matrix yields matrices
WT whose column vectors correspond to the latent representation
of patterns, and H whose column vectors correspond to the latent
representation of particular ⟨stock, date⟩ tuples.

There is an abundance of algorithms to factorize a matrix each
having different characteristics. Here we use non-negative matrix
factorization [11] to decompose the given relation matrix. NMF
considers the following problem: Given a non-negative matrix V ∈

Investigation of the Latent Space of Stock Market Patterns with Genetic Programming GECCO ’18, July 15–19, 2018, Kyoto, Japan

0 1 1 0 1 0 1 1 0 0 0

0.1 0.7 0.9 0.5 1.1 0.2 0.4 0.8 0.2 0.1 0.1Side Information 1

Side Information 2

Side Information 3

Side Information 4

Side Information 5

GP

Tree

Figure 1: Bird’s-eye view of the process. Given a relationma-
trix between patterns and ⟨stock, date⟩, matrix factorization
is performed to extract a latent representation of patterns.
An arbitrary point in the latent pattern space can be con-
verted to a row of V̂ which corresponds to the behavior of a
hypothetical pattern. We can recover a tree representation
of the pattern using side information and GP.

Rn×m , decompose V into a product of two non-negative matrices,

V ≈ W · H (1)

whereW ∈ Rn×r and H ∈ Rr×m

Usually, r is chosen to be smaller than n orm so the resulting
matrices W and H are smaller than the original matrix V.

For the problem we are considering, the matricesW and H cor-
respond to the latent representation of patterns and ⟨stock, date⟩
tuples respectively. If we further decompose the matrix W as a
collection of row vectors, then the i-th rowW(i) corresponds to the
latent representation of the i-th pattern. Similarly, the decomposi-
tion of H into column vectors gives us the latent representation of
each ⟨stock, date⟩ tuple where the j-th column H(j) represents the
latent representation of the j-th tuple.

The choice of a specific matrix factorization model is arbitrary.
One can choose whatever factorization method that seems appro-
priate for the given relationship. Here, we chose NMF since the
occurrence of a pattern match only produces non-negative val-
ues. We used Nimfa [24], a Python library of NMF to perform the
factorization.

Name Notation
Opening Price po (t)
Closing Price pc (t)
Highest Price ph (t)
Lowest Price pl (t)

n-day Highest Price HIGHn (t)
n-day Lowest Price LOWn (t)

n-day Moving Average MAn (t)
Upper Bollinger Band BOLu (t)
Lower Bollinger Band BOLl (t)

Table 1: The set of functions used for the experiment. These
functions form the terminal nodes of theGP tree expression,
together with various constants.

3.2 Side Information
We often have additional information, apart from the relation ma-
trix, that can be utilized. For patterns in stock markets, there are
various elementary functions such as opening and closing prices,
and moving average that can be used as side information. The list
of side information used in this work is provided in Table 1.

Note that the side information, in this context, describes the
property of the ⟨stock, date⟩ tuple. For example, MAn (t) is the n-
day moving average of a particular stock on a particular day. It is
a property of the tuple, not of the pattern that matches against it.
We are assuming that any black box pattern will take advantage of
the latent structure that is shared among ⟨stock, date⟩ tuples. By
applying matrix factorization, such a latent structure is revealed as
a collection of r -dimensional real vectors. It is our observation that
we can explain the latent space using the side information which is
much more interpretable.

3.3 Genetic Programming
Given the side information previously stated, we can create an
expression tree using the side information. Basic functions can
be combined with constants or other functions using arithmetic
operators and logical operators. In the case of stock market side
information, we can specify the time t for the relative shift from the
current day in question.MA10(−5) > LOW5(−4)∧po (−3) < pc (−1)
is an example of an expression tree created by such a process. The
expression means that the 10-day moving average of five days
earlier was greater than the 5-day lowest price of four days earlier
and the opening price of three days earlier is less than the closing
price of yesterday. We can grow arbitrarily complex expression
trees using GP.

For this experiment, we use a total of 100 individuals to form a
population. A steady state GP is used to evolve trees each corre-
sponding to the latent representation of a technical pattern. The
initial population is created to have random trees of depth two or
three. Crossover swaps random subtrees from two parents with 50%
probability or performs a geometric crossover on Boolean space [17]
with 50% probability. Mutation replaces a random subtree with a
random tree or performs a geometric mutation on boolean space
with equal probability. Local search is performed after the mutation.
We search the neighboring trees where a neighbor is defined to be a

GECCO ’18, July 15–19, 2018, Kyoto, Japan Sungjoo Ha, Sangyeop Lee, and Byung-Ro Moon

0.0 0.2 0.4 0.6 0.8 1.0
Fitness of Reconstructed Trees

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
ro

ba
bi

lit
y

D
en

si
ty

Distribution of Fitness

Figure 2: Fitness distribution of reconstructed patterns.

tree of the same structure with differing constants. While traversing
each node, constants related to the node is changed in pursuit of
finding a local optimum. For the fitness of a tree, we use the Jaccard
distance between the match occurrences of the target pattern and
that of the generated tree. The Jaccard distance is defined to be
1− J (A,B) where J (A,B) is the Jaccard similarity between two sets,
defined as follows:

J (A,B) =
|A

⋂
B |

|A
⋃

B |
(2)

We execute GP for 2,500 generations before termination.

4 EXPERIMENTAL RESULTS
Experiments were conducted on the common stocks from the Ko-
rean stock market during the period of 2013 to 2014. A relation
matrix was created using 100 black box patterns which are matched
against a total of 247,968 ⟨stock, date⟩ tuples. The patterns were
generated by evolving trees using GP that aims to find patterns that
match frequently and yield high expected earning rate during the
same period. We specifically tested our method on these patterns to
compare the characteristics of black box classifiers against newly
found trees.

Given a relation matrix, we apply NMF to extract the latent
space of the relationship. Representations were embedded into the
space of 50 dimensions. Once we extracted the matrices W and
H, we checked to see how much of the original matrix the latent
representation could recover. After binarizing the matrix V̂ =WH,
the Jaccard distance between V and V̂ was 0.03745. There were a
total of 21,302 different entries out of 24,796,800 elements.

4.1 Recovering Original Patterns
We evolve trees to match the behavior of black box patterns. The
objective we are pursuing is a corrupted version of the behavior of
original patterns. It is corrupted, in a sense, because we are using V̂,
instead of V, to compute the fitness of a tree. Figure 2 illustrates the
resulting fitness distribution. The mean Jaccard similarity is 0.683.

A close inspection reveals that there are some qualitative differ-
ences between original pattern trees and newly found ones. The
distribution of the tree lengths is shown in Figure 3. The tree length
is defined as the number of nodes used to create the expression

Figure 3: Comparison of the lengths of original patterns and
that of reconstructed patterns.

AN
D

O
R

M
U

L

C
O

M
PA

R
IS

O
N

O
PR

C

C
PR

C

H
PR

C

LP
R

C

BO
L_

U
PP

ER

BO
L_

LO
W

ER

H
IG

H
ES

TP
R

C

LO
W

ES
TP

R
C

M
A

Type of Nodes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
ro

po
rti

on

Original
Reconstructed

Figure 4: Comparison of an original pattern and a recon-
structed pattern.

tree including constants, operators, and functions. We see that the
original trees are relatively larger than the newly constructed ones.
Not only that, the original trees are more uniformly distributed in
terms of their length compared to the newly found trees.

Figure 4 compares a typical case of two pattern trees, one origi-
nal and the other reconstructed, with regard to the proportion of
the constituent nodes. The specific trees are of similar length where
the original pattern has 448 nodes and the reconstructed one has
582 nodes. The fitness of the reconstructed tree is 0.68. Observe
that their composition is considerably different. While the original
pattern focuses on moving averages and Bollinger bands, the re-
construction seems to prefer opening prices and closing prices to
achieve similar results.

We tested both the original patterns and the reconstructed pat-
terns on previously unseen data. If the reconstruction was able
to capture the latent structure, it should lead to similar results
produced by the original patterns. Figure 5 shows the Jaccard simi-
larities between the match results of the original pattern trees and
the reconstructed pattern trees. We see that many of the reconstruc-
tions were able to mimic the behavior of the original patterns on
unseen data. Notice that the shape of the distribution of the Jaccard

Investigation of the Latent Space of Stock Market Patterns with Genetic Programming GECCO ’18, July 15–19, 2018, Kyoto, Japan

0.0 0.2 0.4 0.6 0.8 1.0
Jaccard Similarity of Reconstructed Trees

0.0

0.5

1.0

1.5

2.0

2.5

P
ro

ba
bi

lit
y

D
en

si
ty

Jaccard Similarity on New Data

Figure 5: Jaccard similarity on new data.

Figure 6: Comparison of reproducibility and generalizabil-
ity. Reproducing the behavior of a pattern on known data
correlates with the behavior of the same pattern on un-
known data.

similarities on new data resembles that of the fitness distribution
in Figure 2.

We further looked at the relationship between reproducibility
and generalizability. Figure 6 depicts the relationship using a joint
plot. There is a highly linear relationship between the reproducibil-
ity and the generalizability. If we can reconstruct a tree that re-
produces the behavior of the target black box pattern with high
accuracy, the behavior generalizes to unseen data as well.

4.2 Analysis of Latent Space
4.2.1 Clustering. It is worthwhile to investigate whether the

reconstructed patterns behave similarly to one another. We per-
formed k-means clustering to the latent space representation of

0 5 10 15 20
Cluster Number

0

10

20

30

40

50

N
um

be
r o

f P
at

te
rn

s

Figure 7: Result of k-means clustering.

0.9 0.8 0.7 0.6 0.5 0.4 0.3
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
PCA of Pattern Vectors

Data Point
Cluster Center

Figure 8: Visualization of pattern vectors after PCA. Crosses
correspond to each pattern vector and dots correspond to
cluster centers. Cluster center at the lower right corner cor-
responds to cluster one. Seven outliers were omitted to cre-
ate a discernible plot.

patterns expressed as vectorsW(i) using 20 clusters. The result of
clustering in Figure 7. One large cluster indicates that there is a
large group of patterns that has similar qualities to one another.
To understand the result of the clustering, we performed principal
component analysis (PCA) to visualize the pattern vectors. Figure 8
gives us a hint as to why there is one large cluster. Patterns are
tightly packed around the lower right region of the plot and many
of them are assigned to the cluster center located at the lower right
corner. Seven outliers were removed from the visualization to focus
on the data that are closely located.

One advantage of dealing with latent space is that we can easily
find the center of a cluster. If the relation matrix was produced
by true black box classifiers, it is impossible to find the classifier
that corresponds to the center of a cluster. Even in the case of
white box tree-based patterns, it is still not straightforward how
one can find the center of a cluster. In latent space representation,
it is easy to find a vector representation that corresponds to the
center of a cluster. Once this vector representation is found, we
can create the ˆV (i) result that corresponds to the behavior of a

GECCO ’18, July 15–19, 2018, Kyoto, Japan Sungjoo Ha, Sangyeop Lee, and Byung-Ro Moon

AN
D

O
R

M
U

L

C
O

M
PA

R
IS

O
N

O
PR

C

C
PR

C

H
PR

C

LP
R

C

BO
L_

U
PP

ER

BO
L_

LO
W

ER

H
IG

H
ES

TP
R

C

LO
W

ES
TP

R
C

M
A

Type of Nodes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P
ro

po
rti

on

Reconstruction Average
Center
Random

Figure 9: Comparing the average of reconstruction trees be-
longing to the same cluster with the cluster center and a ran-
domly chosen pattern tree. For this particular case, the KL
divergence between the reconstruction trees and the cluster
center is 0.1595 and the KL divergence between the recon-
struction trees and the random tree is 0.2809.

hypothetical cluster-center pattern. From this, we can find the tree
representation using our approach.

Figure 9 illustrates a typical case of a cluster center. The nodes
comprising a cluster center are fairly similar to the average compo-
sition of the trees belonging to the same cluster. The composition
of a randomly chosen pattern tree is dissimilar from that of the
other two. We can quantify the difference of compositions by com-
puting the KL divergence between the proportion of nodes. For two
probability distributions P and Q , the KL divergence is defined as
follows:

DKL(P | |Q) =
∑
i
P(i) log

P(i)

Q(i)
(3)

The average KL divergence between reconstruction trees and the
cluster center is 0.1575 and the average KL divergence between
reconstruction trees and a random tree is 0.2178.

4.2.2 Orthogonal Basis. We further investigate the latent space
by decomposing each axis of the latent space. Since a pattern is
represented by a linear combination of axes, examining vectors
corresponding to each axis offers insights of the topology of the
latent space. A vector corresponding to a standard basis is used
to create a ˆV (i) result that is assumed to capture the behavior of a
standard basis. Instead of using a unit vector, we stretch the vector
to make sure the length of the vector is similar to that of other
pattern vectors. After creating tree representations corresponding
to such vectors, we examine their contents.

Table 2 exhibits some of the trees corresponding to standard
bases. We see that each axis captures information of differing qual-
ities. For example, the axis 12 heavily exploits moving averages
while the axis 18 does not use moving average at all.

A broader look at the composition of trees hints at the relative
importance of different node types. Table 3 reveals the number of
times a node type appears in a tree corresponding to an axis. Since
there are 50 axes, a node type that occurs 50 times is present in all of

0 20 40 60 80 100 120 140 160 180
Degree Angle

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

P
ro

po
rti

on

Figure 10: Angle between a vector formed by two parents
and a vector formed by a parent and the offspring.

the axis trees. One can tell that raw price information is used more
often than abstract information such as Bollinger bands and n-day
highest prices. While this does not mean that such information is
less useful, it does seem to indicate that they are more specialized
in some sense.

4.2.3 Geometric Operation. The match occurrences of a black
box pattern V(i) can be thought of as the semantic of the pattern.
Matrix factorization transforms the semantic space into two sepa-
rate latent spaces, each corresponding to pattern and ⟨stock, date⟩
tuple. Since we have separated the contribution of patterns and
⟨stock, date⟩ tuples, the geometry of latent pattern space is dif-
ferent from that of the semantic space. We examined the effect of
geometric operations on the semantic space in the latent vector
space.

We picked two original pattern trees and performed geometric
semantic crossover defined as follows:

To = (T1 ∧Tr) ∨ (T2 ∧ ¬Tr) (4)

where T1 and T2 are trees corresponding to parent patterns and Tr
is a random tree of depth three to six. The resulting offspring To
was matched against the given ⟨stock, date⟩ tuples yielding V(k).
We found the corresponding latent vector representation wo =

argminw(w · H) − V(k) by gradient descent.
Given latent vector representation of two parentswp1 andwp2,

we can create a hypersphere whose center iswm =
wp1+wp2

2 and the
diameter is defined by |wp1 −wp2 |2. 80% of the time, the offspring
wo was inside the hypersphere. The mean distance betweenwo and
wp was 12.51 and it was 9.13 for wo and wm . The angle between
wp2−wp1 andwo−wp1 is compared in Figure 10. The mean angle is
45◦. While the latent pattern space does not completely preserve the
geometry of the semantic space, they are not drastically different.

5 CONCLUSIONS
We proposed a method of inspecting the latent space induced by
a low-rank matrix factorization for a relation matrix. We have
experimented the method on the Korean stock market to see if
we can make sense of the latent space of technical patterns. Once
described as a matrix factorization problem, it was straightforward

Investigation of the Latent Space of Stock Market Patterns with Genetic Programming GECCO ’18, July 15–19, 2018, Kyoto, Japan

Axis ∧ ∨ × > < po pc ph pl BOLu BOLl HIGH LOW MA

0 11 8 40 9 11 5 2 4 6 7 5 5 2 4
1 15 15 62 15 16 6 10 8 13 0 6 9 0 10
2 5 10 32 9 7 0 3 10 3 1 1 4 1 9
3 21 9 66 13 18 12 8 2 7 9 4 4 7 9
4 1 1 6 3 0 0 1 0 1 1 1 0 0 2
5 4 16 44 2 19 6 3 6 4 0 2 2 0 19
6 10 6 34 9 8 1 2 8 6 1 9 2 4 1
7 16 0 34 0 17 0 8 8 3 0 4 3 4 4
8 15 0 32 11 5 2 3 14 0 4 0 1 1 7
9 25 8 74 10 24 5 1 7 12 10 0 0 17 16
10 24 1 46 13 13 4 3 11 9 6 6 2 10 1
11 19 0 41 11 9 2 2 9 3 5 5 2 7 5
12 73 15 178 25 64 19 14 34 32 10 14 0 23 32
13 16 6 46 9 14 9 0 3 11 2 6 7 6 2
14 26 2 58 19 10 8 12 2 6 2 8 0 3 17
15 13 5 38 9 10 5 2 5 7 3 8 2 4 2
16 15 9 54 13 12 5 1 4 17 4 14 4 0 1
17 16 8 46 12 13 7 0 11 6 5 4 2 9 6
18 19 1 42 12 9 3 14 9 2 2 4 4 4 0
19 8 6 30 4 11 5 2 4 4 4 4 1 4 2
20 22 4 54 16 11 2 4 9 10 8 7 3 0 11
21 10 15 52 8 18 3 3 7 7 9 10 7 4 2
22 39 8 103 24 24 7 20 20 19 7 0 3 0 20
23 32 0 66 3 30 1 2 13 8 0 3 18 12 9
24 51 11 127 49 14 11 6 28 9 17 0 20 24 11

Table 2: Composition of trees corresponding to standard bases.

Node Type Count
∧ 49
∨ 44
× 50
> 49
< 49
po 43
pc 47
ph 49
pl 48

BOLu 41
BOLl 40
HIGH 39
LOW 39
MA 44

Table 3: The number of times a node appears in a tree corre-
sponding to standard basis.

to examine the nature of the black box classifiers that correspond
to technical patterns. The relationship between reproducibility and
generalizability tells us that if we can reproduce the result with
high accuracy, we can rely on the reconstructed tree to interpret
the black box algorithm that created the relationship.

It is noteworthy to point out that the method is not specific to
stock markets. When we have a relation matrix and appropriate

side information, we can apply the method to inspect the latent
space and make use of the resulting trees. Such trees not only bring
us insights about the latent structure, they can also be used to make
decisions since these trees act as classifiers.

Future work includes applying the framework on other domains
such as collaborative filtering and social network connections. We
also wish to address the problem of ignoring the time dependencies
between ⟨stock, date⟩ pairs. There are more sophisticated models
that explicitly model such dependencies using context-awarematrix
factorization methods including factorization machines [19] and
tensor factorization.

REFERENCES
[1] D Anand. 2012. Feature Extraction for Collaborative Filtering: A Genetic Pro-

gramming Approach. International Journal of Computer Science Issues 9, 5 (2012),
348–354.

[2] James Bennett and Stan Lanning. 2007. The Netflix Prize. In KDD-Cup and
Workshop at International Conference on Knowledge Discovery and Data Mining.

[3] Jesus Bobadilla, Fernando Ortega, Antonio Hernando, and Javier Alcalá. 2011.
Improving collaborative filtering recommender system results and performance
using genetic algorithms. Knowledge-Based Systems 24, 8 (2011), 1310–1316.

[4] Gabriel Doyle and Charles Elkan. 2009. Financial Topic Models. In NIPS Workshop
on Applications for Topic Models: Text and Beyond.

[5] Konstantinos Drakakis, Scott Rickard, Ruairí de Fréin, and Andrzej Cichocki. 2008.
Analysis of financial data using non-negative matrix factorisation. International
Mathematical Forum 3, 38 (2008), 1853–1870.

[6] Simon Fong, Yvonne Ho, and Yang Hang. 2008. Using Genetic Algorithm for Hy-
brid Modes of Collaborative Filtering in Online Recommenders. In International
Conference on Hybrid Intelligent Systems. 174–179.

[7] Adolfo Guimarães, Thales F Costa, Anisio Lacerda, Gisele L Pappa, and Nivio
Ziviani. 2013. GUARD: AGenetic Unified Approach for Recommendation. Journal
of Information and Data Management 4, 3 (2013), 295–310.

GECCO ’18, July 15–19, 2018, Kyoto, Japan Sungjoo Ha, Sangyeop Lee, and Byung-Ro Moon

[8] Sungjoo Ha and Byung Ro Moon. 2015. Fast Knowledge Discovery in Time Series
with GPGPU on Genetic Programming.. In Genetic and Evolutionary Computation
Conference. 1159–1166.

[9] Yehuda Koren. 2009. The bellkor solution to the netflix grand prize. Technical
Report.

[10] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization Tech-
niques for Recommender Systems. IEEE Computer 42, 8 (2009), 30–37.

[11] Daniel D. Lee and H. Sebastian Seung. 2001. Algorithms for Non-negative Matrix
Factorization. In Advances in Neural Information Processing Systems 13. 556–562.

[12] Seung-Kyu Lee and Byung Ro Moon. 2010. A new modular genetic program-
ming for finding attractive technical patterns in stock markets. In Genetic and
Evolutionary Computation Conference. 1219–1226.

[13] Piotr Lipinski. 2007. ECGA vs. BOA in discovering stock market trading experts..
In Genetic and Evolutionary Computation Conference (2007-08-21). 531–538.

[14] PawełLiskowski and Wojciech Jaśkowski. 2017. Accelerating Coevolution with
Adaptive Matrix Factorization. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO ’17). ACM, New York, NY, USA, 457–464. https:
//doi.org/10.1145/3071178.3071320

[15] PawełLiskowski and Krzysztof Krawiec. 2016. Non-negative Matrix Factorization
for Unsupervised Derivation of Search Objectives in Genetic Programming. In
Proceedings of the Genetic and Evolutionary Computation Conference 2016 (GECCO
’16). ACM, New York, NY, USA, 749–756. https://doi.org/10.1145/2908812.2908888

[16] Tang Liu. 2009. Non-Negative Matrix Factorization for Stock Market Pricing. In
International Conference on Biomedical Engineering and Informatics. 1–5.

[17] Alberto Moraglio, Krzysztof Krawiec, and Colin G Johnson. 2012. Geometric
Semantic Genetic Programming. In Parallel Problem Solving from Nature. 21–31.

[18] Jean-Yves Potvin, Patrick Soriano, and Maxime Vallée. 2004. Generating Trading
Rules on the StockMarkets with Genetic Programming. Computers and Operations
Research 31, 7 (June 2004), 1033–1047.

[19] Steffen Rendle. 2010. Factorization Machines. In International Conference on Data
Mining. 995–1000.

[20] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. 2007. Restricted
Boltzmann Machines for Collaborative Filtering. In International Conference on
Machine Learning. 791–798.

[21] Felix Ming Fai Wong, Zhenming Liu, and Mung Chiang. 2014. Stock Market
Prediction fromWSJ: TextMining via SparseMatrix Factorization. In International
Conference on Data Mining. 430–439.

[22] Zhao Xu, Volker Tresp, Achim Rettinger, and Kristian Kersting. 2010. Social
Network Mining with Nonparametric Relational Models. In Advances in Social
Network Mining and Analysis. Vol. 5498. 77–96.

[23] Zhong-Yuan Zhang. 2012. Nonnegative Matrix Factorization: Models, Algorithms
and Applications. In Data Mining: Foundations and Intelligent Paradigms. Vol. 24.
99–134.

[24] Marinka Žitnik and Blaž Zupan. 2012. Nimfa: A Python Library for Nonnegative
Matrix Factorization. Journal of Machine Learning Research 13 (2012), 849–853.

https://doi.org/10.1145/3071178.3071320
https://doi.org/10.1145/3071178.3071320
https://doi.org/10.1145/2908812.2908888

	Abstract
	1 Introduction
	2 Background
	3 Problem Statement
	3.1 Matrix Factorization
	3.2 Side Information
	3.3 Genetic Programming

	4 Experimental Results
	4.1 Recovering Original Patterns
	4.2 Analysis of Latent Space

	5 Conclusions
	References

