
Fast Knowledge Discovery in Time Series with GPGPU on
Genetic Programming

Sungjoo Ha
School of Computer Science & Engineering

Seoul National University
1 Gwanak-ro, Gwanak-gu, Seoul, 151-744 Korea

shurain@soar.snu.ac.kr

Byung-Ro Moon
School of Computer Science & Engineering

Seoul National University
1 Gwanak-ro, Gwanak-gu, Seoul, 151-744 Korea

moon@snu.ac.kr

ABSTRACT

We tackle the problem of knowledge discovery in time se-
ries data using genetic programming and GPGPUs. Using
genetic programming, various precursor patterns that have
certain attractive qualities are evolved to predict the events
of interest. Unfortunately, evolving a set of diverse pat-
terns typically takes huge execution time, sometimes longer
than one month for this case. In this paper, we address this
problem by proposing a parallel GP framework using GPG-
PUs, particularly in the context of big financial data. By
maximally exploiting the structure of the nVidia GPGPU
platform on stock market time series data, we were able see
more than 250-fold reduction in the running time.

Categories and Subject Descriptors

C.1.2 [Processor architectures]: Multiple Data Stream
Architectures—Interconnected architectures; Parallel proces-
sors; multiple-data-stream processors (SIMD); J.m. [Computer

Applications]: Miscellaneous;

Keywords

patterns; technical patterns; GPU-based acceleration; multi-
GPU systems; time series data; genetic programming; par-
allelization; speedup technique

1. INTRODUCTION
Processing and storing time series data has a long his-

tory. It is drawing ever stronger attention, particularly with
the advent of big data. An increasing number of systems
produce a massive amount of time series data. Traditional
sources include stock markets and various scientific comput-
ing environments. More recent sources include monitoring
metrics produced by millions of nodes in cloud computing in-
frastructures and various sensor devices. The vast amount
of time series data gathered across various fields suggests
that the importance of knowledge discovery in time series
will be emphasized even further.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11 - 16, 2015, Madrid, Spain

c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3472-3/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739480.2754669

Discovering knowledge in time series can be decomposed
into two components. A discovery engine proposes a candi-
date pattern that is believed to possess some characteristics
that can be interpreted as knowledge. A query engine takes
this pattern and matches it against the time series database.
Querying on a time series database has different aspects from
querying on a database without the dimension of time. In
traditional databases each record is independent of other
records but in time series database, some of the attributes
are related to one another by the time dimension.

There are a notable amount of research regarding the time
series database (TSDB). Last et al. [12] described a general
methodology for knowledge discovery in TSDB. Przymus
and Kaczmarski [22] proposed query engine for time series
data based on GPGPU and NoSQL databases. While such
researches are promising, not enough mature implementa-
tions of GPGPUs are available. We exploit the problem-
dependent structure with respect to GPGPU to further en-
hance the performance of such a system.

There are various instances of using evolutionary algo-
rithms (EAs) for pattern mining [27][10]. Povinelli [21] pro-
posed a genetic algorithm (GA) to find temporal patterns in-
dicative of time series events. There are numerous researches
in finding technical patterns in stock markets [20][14]. One
such example is illustrated in Lee and Moon [13] where they
applied genetic programming (GP) [8] for mining attractive
technical patterns using a modular GP.

Extensive research has been done on parallelization of EA
and local search algorithms [1][11][15][24][25][23]. The sim-
plest form of parallelization is the master-slave model. In a
master-slave model, a single population is maintained and
fitness evaluation is distributed over multiple slaves; some-
times different genetic operators are assigned over them.
This approach has the benefit of being simple and effective,
especially when a memetic GA is used. Jaros and Tyrala
[7] used a master-slave model to parallelize the evolution
of communication schedules by offloading fitness evaluation
to GPGPUs. Instead of offloading only the fitness function
evaluation, Hidalgo et al. [5] parallelized the whole evolu-
tionary process using GPGPUs. More careful design of EA
to take advantage of GPU execution are also possible. Mussi
et al. [18] organized a particle swarm optimization (PSO)
algorithm that assigned a particle per block to get rid of ex-
plicit synchronization points. In a similar manner, Krömer
et al. [9] suggested a many-threaded implementation of dif-
ferential evolution where a candidate solution is assigned
to each block and a vector coordinate is processed by each
thread.

1159

Another popular choice of parallelization scheme is the
island model [19][16]. For an island model, multiple sub-
populations are maintained; they are relatively independent
from one another. Once in a while, these subpopulations
exchange individuals by migration. Hrbacek and Sekanina
[6] tried parallelization for Cartesian genetic programming
in the domain of evolutionary circuit design under the island
model.
There are also variants of GAs that employ a population

that has a special topology whose spatial structure can be
exploited to achieve parallelism [3]. Vidal and Alba [28] im-
plemented a cellular genetic algorithm on multiple GPUs ex-
ploiting the toroidal structure of the population. Of course,
there are approaches that combine multiple approaches to-
gether in order to further reduce the execution time [30].
The range of performance gain differs considerably de-

pending on the domain. While some report more than a
thousand-fold increase in the performance [19], most of the
results fall somewhere between a few times to a few hun-
dred times reduction in the execution time. In an applica-
tion of parallel multi-swarm PSO to a task matching prob-
lem, Solomon et al. [26] achieved up to a 37-fold speedup
over a sequential algorithm. Maitre et al. [17] tested coarse
grain parallelization using the EASEA language [2] where
they achieved a 105-fold speedup for the Weierstrass bench-
mark and a 60-fold reduction in the running time for the
real world application of atomic model matching for chem-
ical structures. Rocki and Suda [24] implemented the 2-
opt and 3-opt local search method on GPUs to solve the
traveling salesman problem (TSP). They limited the prob-
lem size and extensively used the shared memory to achieve
over 500-fold reduction in running time against a sequential
algorithm.
In this paper, we propose a parallel framework for GP us-

ing the CUDA platform on time series data. We describe the
implementation details for this parallelization framework.
We achieved a significant reduction of running time in find-
ing interesting patterns from the time series data of Korean
stock market.
The remainder of the paper is organized as follows. Sec-

tion 2 formulates the problem. In Section 3 we explain the
proposed parallelization framework in details. The evolution
of precursor patterns using GP is described in Section 4. We
present the experimental results in Section 5. Section 6 con-
cludes the paper.

2. PROBLEM STATEMENT
A time series data set is a sequence of records each con-

taining a set of attributes and a timestamp. Since we are
dealing with time series data, it is natural to sort them
on timestamps. Although the time step between two data
points may not be discrete, there is always a finite number
of points and we can assign an integer to refer to a single
data point. If we need to work with the exact time differ-
ences between two data points, this value can be added into
the record as an attribute. For example, in stock markets,
we have various prices such as the opening price and the
closing price being provided with a timestamp. Assuming
the current record is indexed by an integer i, we can refer to
the previous record with the index i − 1. Time series data
may be collected from multiple sources that share common
characteristics. An example of such a case is where we have
multiple companies in a given stock market. Each company

stock may span a different range of time but they have the
same attributes as other company stocks in the market.

Each attribute may contain categorical or real values but
here we limit our discussion to real or Boolean valued at-
tributes. We define a pattern as a conjunction of Boolean ex-
pressions. An expression is a combination of constants, com-
parison operators, arithmetic operators, logical operators,
and attributes. Constants refer to real numbered values.
Comparison operators, arithmetic operators, and logical op-
erators may consist of operators such as {<,>,=,≤,≥},
{+,−,×, /}, and {∧,∨,¬}, respectively. Depending on the
domain of the time series data, we may choose to include
whatever functions, in terms of the attributes, that seem
appropriate. In the context of discovering attractive techni-
cal patterns for stock markets, a technical pattern may look
something like“1.1×po(−1) < pc(0)∧MA20(0) > MA60(0)”
which means that 1.1 times the opening price of the previ-
ous trading day is less than the closing price of today and
the 20-day moving average of price is greater than that of
60-day moving average. The variables such as po, pc, and
MA are attributes or higher-level functions.

Knowledge discovery is a process of finding interesting
patterns or structures from the given data. In time series
data, we are interested in finding precursors to some events
of interest.

Given a pattern, a time series index, and time series data,
we say that an event occurred if a pattern matched at a
given time series index returns true. Not every pattern will
yield true all the time. Therefore there are inherent un-
certainties associated with events. These uncertainties can
be handled by taking the expectation of the events. This
naturally extends to the case where we are interested in cal-
culating some other values that are related to an event. For
example, in a technical pattern analysis, we are interested
in finding attractive technical patterns that are indicative of
high profitability. We may calculate 10-day earning rates of
the events associated with a technical pattern.

3. GPU ACCELERATION

3.1 CUDA Memory and Execution Model
In the CUDA platform, we define functions, called kernels,

which are executed in parallel by multiple CUDA threads.
Threads are organized into blocks which, in turn, are orga-
nized into grids. This is illustrated in Figure 1. The execu-
tion of threads is conducted in parallel with each unit of exe-
cution being a half warp. A warp consists of 32 threads that
execute exactly the same instruction. If there are branches
of instructions within a warp, the instructions are executed
multiple times for different branches.

Threads within a block can cooperate with other threads
within the same block using the shared memory. Thread
blocks are required to execute independently which implies
that they can be executed in any order. Such a design allows
us to scale with the number of cores. But this also means
that we cannot explicitly synchronize between blocks. For
such a case where we need global synchronization, we adopt
the divide-and-conquer strategy and decompose the problem
into multiple kernels. A kernel launch serves as a global
synchronization point.

A thread may access multiple memory spaces for data ac-
cess and storage. Each thread has a private local memory
space. A local memory space consists of thread local global

1160

Grid

Block Block Block

Block Block Block

Thread Thread Thread Thread

Thread Thread Thread Thread

Thread Thread Thread Thread

Block

Figure 1: Grid of thread blocks

memory, which is often just called a local memory, and regis-
ters. While registers are very fast, they are scarce resources.
If we allocate too many registers per thread, some of the
data are spilled into the global memory which is called local
memory in such a context. Each thread block has a shared
memory that is shared and accessed by all the threads within
the block. All threads in different blocks have access to the
global memory. There are two additional read-only mem-
ory spaces: the constant memory and the texture memory.
These two memory spaces are essentially a global memory
optimized for different memory usages. The memory hier-
archy is illustrated in Figure 2.

3.2 Parallelization Model
There are several ways to parallelize a GP program with

GPGPUs. While it is possible to implement the whole GP
framework on top of GPGPU, this approach has several
downsides. The inherent complexity of programming on
GPGPU discourages implementing the whole GP framework
on GPGPU. For example, most EAs demand some form of
randomness usually implemented by random number gener-
ation. There are multiple ways of providing random num-
bers and this imposes a design decision that has to be made.
Although the current CUDA framework provides Curand()
function for random number generation, this is not adequate
for some problems [5]. Also, for hybrid GPs, overwhelming
majority of the execution time is spent during the fitness
evaluation of individuals. In Section 5 we show that this is
the case for this work and more than 97% of the GP execu-
tion time is spent during the fitness evaluation. Therefore, a
simpler approach is to only parallelize the fitness evaluation

Block

Thread Per-thread Local
Memory

Per-block Shared
Memory

Global Memory

Grid

Block Block Block

Block Block Block

Grid

Block Block Block

Block Block Block

Figure 2: Memory hierarchy of CUDA framework

part. Not only is this approach much simpler, it also offers
us the flexibility in the design of the GP framework.

3.3 Implementation Details

3.3.1 Structure of Parallel Framework

We divide the program into two parts: the evaluation part
which evaluates the fitness of a given pattern and the rest
of the genetic programming.

A pattern is expressed using a postfix notation and passed
to the GPU in a form of an array. Such postfix trees can
be easily evaluated with a stack. An obvious way to pass
the pattern tree to GPU is through the constant memory. A
pattern tree is small, relative to the whole data, and needs
to be broadcasted to all the threads in exactly the same way
which fits the memory access assumptions imposed on the
constant memory.

We can extend the framework by using multiple GPUs.
The time series data set is partitioned into different chunks
and distributed over multiple GPUs. We can load the data
once and perform asynchronous memory copy only for the
newly created individuals and their partial aggregate results.
A global synchronization barrier collects the partial evalua-
tion results from GPU devices and aggregates the results as
a whole in the host.

Since we are matching a pattern against the time series
data and collecting the calculated aggregates, only a small
amount of data is transferred between the host and the
GPUs. This is desirable since the data transfer between
the host and the GPUs is the top bottleneck candidate for
the whole process. Partial aggregates from each kernel are
passed to host using streams.

1161

Field1[0][0]

Field2[0][0]

Field1[1][0]

Field1[2][0]

Field1[0][1] Field1[0][2] Field1[0][3]

Field1[1][1] Field1[1][2] Field1[1][3]

Field1[2][1] Field1[2][2] Field1[2][3]

Field2[1][0]

Field2[2][0]

Field2[0][1] Field2[0][2] Field2[0][3]

Field2[1][1] Field2[1][2] Field2[1][3]

Field2[2][1] Field2[2][2] Field2[2][3]

Sources

Sources

Time

Figure 3: Layout of the time series data in the global mem-
ory. The whole data is divided into several chunks. Each
chunk contains only a single attribute of the whole time se-
ries data. An attribute of a single input source is stored
in a contiguous memory space. This spans multiple input
sources to form a conceptual 2-dimensional array.

3.3.2 Memory Utilization

Each time series source and its related fields are arranged
as a 1-dimensional array per field. This is illustrated in
Figure 3. A warp accesses the same attribute of the same
input source for different time indices. This suggests that
we had better place these values in consecutive slots. When
a single input source is processed, the warp jumps to the
next input source and this behavior is naturally exploited
by placing input sources consecutively.
We will match a pattern by moving along with time per

source at a time; this leads to a better memory access pat-
tern if we arrange the data correctly. Each source can span
a different range of time, and in such cases we add dummy
data to pad each source which reduces the complexity of the
program. All of the time series data is stored in the global
memory and passed to GPUs. When using multiple GPU
devices, we can divide the data into an equal number of in-
put sources and assign the divided data to multiple devices.
A pattern is passed asynchronously to multiple devices using
streams.
Each thread will accumulate the result of its calculation

into the shared memory. This is later accumulated into a
single number per block by parallel reduction. The par-
tially accumulated values computed in blocks are returned
to the host and a sequential reduction at the host is per-
formed to compute the final result of the pattern match. If
some calculation depends on multiple input sources, we ac-
cumulate the temporary values in the global memory and
launch a different kernel for reduction. This does not cause
a notable performance loss because hardware overhead of a
kernel launch is negligible and software overhead is low [4].
The stack structure maintained by each thread is another

aspect that needs deliberation. If we limit the size of the
tree to a reasonable size, the stack part can position at the
shared memory which is much faster than the global one.
But the limitation on the size of the tree may be too much
of a constraint for some domains. Not only that, in some
cases, it is possible to achieve better performance by using
a thread local global memory. Usually, the shared memory
is much faster than the local memory but the actual perfor-
mance may vary depending on the memory access pattern
and the resource constraints imposed by the hardware. If

the usage of the shared memory hinders the utilization of a
large number of threads, it is better to use the local memory
instead.

3.3.3 Single vs. Double Precision Floating Point

One decision to make is the choice between single and
double precision for floating point numbers. While in CPU
we don’t suffer a notable speed loss by choosing double pre-
cision, in GPU it is not the case. When we experimented on
our machine, we saw roughly 2-fold speed differences. Not
only that, a double precision floating point number will use
twice the number of registers compared to a single precision
floating point. Therefore, it is reasonable to work with single
precision floating point numbers unless it is absolutely nec-
essary to have high precision. On CPU, accumulating many
small numbers may lead to a significant numerical error.
This happens because at the later stages of accumulation,
we add large numbers with small numbers. On GPU this
effect is somewhat mitigated because we perform parallel
reduction and add numbers of comparable sizes.

4. EVOLUTION OF PATTERNS
A steady state genetic programming is used to evolve pre-

cursor patterns. A total of 500 individuals are evolved,
where each individual represents a precursor pattern. Each
individual is randomly initialized to a tree of depth 3.

The crossover operator chooses a random subtree of a par-
ent and swaps it with a random subtree of the other parent
to create a new offspring. For mutation, we choose a random
subtree and replace it with a randomly created subtree.

Once an offspring is created, local optimization is applied
until there is no improvement by corresponding local search
operators. The local optimization traverses each node and
changes the constants according to their types.

The fitness of an individual should reflect our notion of
how interesting are the events associated with the precursor
pattern. Here, we test with the problem of finding attractive
technical patterns in a stock market. We assume that a tech-
nical pattern is attractive if it is profitable and statistically
frequent.

The profitability of a technical pattern r is defined to be
the expected earning rate of r after k trading days:

Ek[r] =
1

|R(r)|

∑

(i,j)∈R(r)

pc(i, j + k)

pc(i, j)
(1)

whereR(r) = {(i, j)|r matches company i on trading day j}
and pc(i, j) is the closing price of company i at trading day
j.

To account for the frequency of a given pattern, we define
the attractiveness of a technical pattern as follows:

f(r) =

{

Ek[r] if |R(r)| ≥ k
0 otherwise.

(2)

The constant k is a predefined threshold value to deter-
mine whether the given pattern is frequent or not in a statis-
tical point of view. The fitness of an individual is computed
by Equation 2.

1162

CPU 1GPU 2GPU 3GPU 4GPU 5GPU 6GPU 7GPU 8GPU
Number of Devices

0

500

1000

1500

2000

2500

3000

T
im

e
(m

s)
Mean Execution Time

(a)

1GPU 2GPU 3GPU 4GPU 5GPU 6GPU 7GPU 8GPU
Number of Devices

0

10

20

30

40

50

T
im

e
(m

s)

Mean Execution Time (GPU-only)

(b)

Figure 4: Mean execution time of a fitness evaluation func-
tion for different numbers of devices. (a) Comparison of the
execution time among CPU and various number of GPU de-
vices. (b) A close look at the difference over the numbers of
GPU devices.

5. EXPERIMENTAL RESULTS
The experiment is conducted on the Korean stock market

ranging from 2000 to 2014.
We run the sequential and CPU portion of the program on

Intel(R) Core(TM) i7-3820 CPU @ 3.60GHz on Linux 3.2.0.
For GPU parallelization, four GeForce GTX 690 cards, where
each card has two devices leading to a total of eight GPU
devices, were used. Programs were compiled using clang
compiler and nvcc compiler.
A single GP generation, even though it is a steady-state

GP, takes fairly long with the CPU version of the code.
Therefore, we report the time it took to evaluate various
pattern trees created during a typical GP run. We test a
sequential version of the program implemented in CPU, a
parallelized version of the program using a single GPU de-
vice, and one using multiple GPU devices.
A typical execution of GP for 50 generations (cut for this

test) using 8 CUDA devices took around 120 ∼ 180 seconds
to terminate. Roughly 17,000 to 21,000 fitness evaluations
are performed during these 50 generations. Needless to say,

CPU 1GPU 2GPU 3GPU 4GPU 5GPU 6GPU 7GPU 8GPU

Number of Devices

0

50

100

150

200

250

300

R
el
a
ti
ve

S
p
ee
d
u
p

Relative Speed Against CPU

(a)

1GPU 2GPU 3GPU 4GPU 5GPU 6GPU 7GPU 8GPU

Number of Devices

0

1

2

3

4

5

R
el
a
ti
ve

S
p
ee
d
u
p

Relative Speed Against Single GPU

(b)

Figure 5: Relative speedup with different numbers of de-
vices. (a) Relative speed against the CPU-only version. The
speed of CPU is 1. (b) Comparison among multiple GPUs.

the local optimization routine spent the majority of the ex-
ecution time. For a typical GP run using 8 GPU devices,
the local optimization took more than 97% of the time.

Appropriate thread/block/grid sizes are determined by
cross validation. It is imperative that we choose these num-
bers carefully because they affect the occupancy of multi-
processors on GPUs. This, in turn, affects the performance
of the whole system. It is not always better to allocate as
many threads per block as possible due to the memory access
pattern of the program and how instruction level parallelism
is exploited. For this experiment, we used 512 threads per
block and 256 blocks per grid. We only used a single grid.

5.1 Performance Comparison
We compare the execution time for evaluating a typical

pattern tree and the relative speed over the numbers of GPU
devices. Figure 4a compares the mean execution time of the
fitness evaluation for a given tree. It is clear that paral-
lelization using GPU leads to a dramatic performance gain.
Switching from a sequential algorithm to a parallel version
using a single GPU device resulted in 56-fold reduction of
the execution time. The relative speeds against CPU with
various numbers of GPU devices is shown in Figure 5a. We

1163

Devices
Relative Speed

Local Shared
µ σ µ σ

CPU 1.0 0 1.0 0
1 GPU 56.9 3.8 35.8 2.8
2 GPU 101.7 7.2 65.0 5.5
3 GPU 132.7 11.1 88.0 8.1
4 GPU 157.1 15.5 107.2 10.7
5 GPU 191.7 19.9 130.3 13.7
6 GPU 222.0 24.5 151.5 16.6
7 GPU 247.5 29.3 172.2 19.5
8 GPU 277.0 36.8 188.7 22.4

Table 1: Relative speeds against CPU with different num-
bers of GPU devices. Note that the thread local global mem-
ory is faster than the shared memory. The average relative
speed is denoted by µ and σ represents its standard devia-
tion.

see a strong linear relationship between the relative speed
and the number of GPU devices. Fitness evaluation using 8
GPU devices was roughly 277 times faster than that of the
CPU version of the program. Exact figures are provided in
Table 1.
A close inspection of execution time shows a clearer pic-

ture of speed gains by additional introduction of GPU de-
vices. Figure 4b shows that the execution time steadily de-
creases as GPU devices are increasingly added. The strong
linear relationship shown in Figure 5b indicates that our
parallelization framework scales well for this particular prob-
lem. While adding an additional device does not yield 100%
performance gain possible, it roughly yields 80% gain per
additional device. The strong scaling of the result suggests
that there is room for additional performance gain by adding
more GPUs.

5.2 Effect of Tree Sizes
We analyze the effect of the tree size on the execution

time. The size of a pattern tree corresponds to the number
of nodes in the tree. A large tree is relatively more costly to
evaluate than a smaller one. This behavior is clearly shown
in Figure 6a. As the number of nodes per tree increases from
31 to 55, the time for a single fitness evaluation nearly dou-
bles with the CPU version of the code. In Figure 6b we see
that using more devices leads to a slower increase of the ex-
ecution time as the tree grows bigger. Thus, parallelization
allows us to build increasingly complex trees. Exact figures
are given in Table 2.
While a simpler tree is ideal for human interpretation, it

might not be able to capture complex underlying behavior
that can only be expressed by a complex tree. If we wish to
explore such representations, we need to be able to evolve
increasingly complex trees. The experiment result suggests
that by adopting the parallel GP framework, we can expect
additional performance gain from this.

5.3 Local vs. Shared Memory
While it is widely known that the shared memory is fast

and the thread local global memory is slow, relatively, it
may not be the case all the time. In the CUDA platform,
the shared memory is allocated to blocks which are executed
on a single multiprocessor on GPU devices. Allocating too

35 40 45 50 55

Number of Nodes

1500

2000

2500

3000

3500

4000

T
im

e
(m

s)

Execution Time vs. Number of Nodes (CPU)

(a)

35 40 45 50 55

Number of Nodes

0

10

20

30

40

50

60

70

T
im

e
(m

s)

Execution Time vs. Number of Nodes (GPU)

1GPU

4GPU

8GPU

(b)

Figure 6: Execution time for different sizes of pattern trees.
(a) The increase in execution time as the pattern tree grows.
(b) Comparison for different numbers of GPU devices. In-
creasing the number of devices led to relatively slower in-
crease of execution time with respect to the number of nodes.

much shared memory per block prevents multiple blocks to
be executed on a single multiprocessor and reduces the oc-
cupancy. When a high occupancy of the multiprocessor is
attained, the high latency of the global memory is hidden
by switching to other warps being not stalled.

Since we have to maintain a stack per thread, a relatively
large amount of shared memory has to be allocated. The
performance penalty of storing a large array in the shared
memory is shown in Table 1. Although the thread local
global memory has high latency, this is effectively hidden
by high occupancy. When a warp from one block is stalled
by slow memory access, the multiprocessor simply processes
some other warp that is not stalled. This led to roughly
1.5-fold speedup.

6. CONCLUSIONS
We proposed a parallel framework for knowledge discovery

in time series data using GP and GPGPU. We experimented
on Korean stock market from 2000 to 2014 to find attractive
technical patterns using the parallel GP framework. The
experimental results show that this framework scales well
and by using 8 GPU devices, we could reduce the execution
time up to roughly 270 times that of a sequential version of
the program.

1164

Tree Size CPU 1 Device 2 Devices 3 Devices 4 Devices 5 Devices 6 Devices 7 Devices 8 Devices
31 1904.1 33.0 19.4 15.9 14.0 11.6 10.1 9.3 8.2
33 2278.5 41.7 23.9 18.6 16.0 13.1 11.4 10.3 9.2
39 2696.9 44.2 24.9 19.4 16.7 13.6 11.8 10.7 9.6
41 3075.4 53.8 29.4 22.1 18.5 15.2 13.0 11.6 10.5
47 3236.8 56.9 31.1 23.3 19.4 15.9 13.7 12.2 10.9
55 3943.4 68.9 36.7 27.0 22.0 17.9 15.2 13.4 12.0

Table 2: Mean execution time (ms) for various tree sizes

Tree Size CPU 1 Device 2 Devices 3 Devices 4 Devices 5 Devices 6 Devices 7 Devices 8 Devices
31 184.37 0.32 0.20 0.11 0.07 0.25 0.25 0.23 0.72
33 103.16 2.53 1.13 0.77 0.60 0.62 0.56 0.44 0.72
39 55.55 1.18 0.52 0.31 0.24 0.31 0.29 0.39 0.80
41 68.27 2.48 1.09 0.68 0.50 0.53 0.49 0.48 0.81
47 156.64 3.23 1.29 0.87 0.63 0.54 0.50 0.43 0.68
55 73.37 3.00 1.05 0.59 0.44 0.49 0.52 0.32 0.71

Table 3: Standard deviation of execution time (ms) for various tree sizes

We described how the framework was implemented by us-
ing multiple GPUs in CUDA platform. A careful choice of
the structure of parallel framework and the memory utiliza-
tion method, which led to excellent speedup, was discussed
in details. Specifically, by choosing the local memory over
the shared memory for the storage of stack structure led to
more than 1.4-fold speed gain.
Note that the acceleration attained by using multiple GPG-

PUs does not influence the quality of the resulting GP solu-
tions because we only parallelize the fitness evaluation and
the rest of the evolutionary technique is left unmodified. The
faster execution of the fitness evaluation naturally allows the
evolutionary algorithm to search for better solutions given
a restricted time budget. For knowledge discovery in time
series data, we can leverage this fact and evolve more diverse
yet interesting individuals.
Future work would include extending our framework to ex-

ploit the population level parallelism by using island model.
Parallelism obtained by our framework can easily be ex-
tended by exploiting the parallelism on population level us-
ing multiple machines. The evolution of the population
based on island model will lead to rich diversity of individ-
uals which is desirable for knowledge discovery. While the
current framework mainly focuses on the thread level paral-
lelism, to reach the maximum performance gain, additional
attention to the instruction level parallelism is required [29].

7. ACKNOWLEDGMENTS
This work is the result of a commercial project conducted

at Optus Investment Inc. The work was also partly sup-
ported by the Engineering Research Center of Excellence
Program of Korea Ministry of Science, ICT & Future Plan-
ning(MSIP) / National Research Foundation of Korea(NRF)
(Grant NRF-2008-0062609). The ICT at Seoul National
University provided some research facilities for this study.

References

[1] E. Cantú-Paz. A survey of parallel genetic algorithms.
Calculateurs Paralleles, Reseaux et Systems Repartis,
10, 1998.

[2] P. Collet, E. Lutton, M. Schoenauer, and J. Louchet.
Take it EASEA. Parallel Problem Solving from Nature
- PPSN VI, volume 1917, pages 891–901, 2000.

[3] M. J. Gibson, E. Keedwell, and D. A. Savic.
Understanding the efficient parallelisation of cellular
automata on CPU and GPGPU hardware. Genetic
and Evolutionary Computation Conference, pages
171–172, 2013.

[4] M. Harris. Optimizing parallel reduction in CUDA.
Technical report, nVidia, 2008.

[5] J. I. Hidalgo, J. M. Colmenar, J. L. Risco-Mart́ın,
C. Sánchez-Lacruz, J. Lanchares, O. Garnica, and
J. Dı́az. Solving GA-hard problems with EMMRS and
GPGPUs. Genetic and Evolutionary Computation
Conference, pages 1007–1014, 2014.

[6] R. Hrbacek and L. Sekanina. Towards highly
optimized cartesian genetic programming: From
sequential via SIMD and thread to massive parallel
implementation. Genetic and Evolutionary
Computation Conference, pages 1015–1022, 2014.

[7] J. Jaros and R. Tyrala. GPU-accelerated evolutionary
design of the complete exchange communication on
wormhole networks. Genetic and Evolutionary
Computation Conference, pages 1023–1030, 2014.

[8] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, 1992.

[9] P. Krömer, V. Snásel, J. Platos, and A. Abraham.
Many-threaded implementation of differential
evolution for the CUDA platform. Genetic and
Evolutionary Computation Conference, pages
1595–1602, 2011.

[10] Y.-K. Kwon and B.-R. Moon. Personalized email
marketing with a genetic programming circuit model.
Genetic and Evolutionary Computation Conference,
pages 1352–1358, 2001.

1165

[11] W. B. Langdon. Graphics processing units and genetic
programming: An overview. Soft Computing, 15(8):
1657–1669, 2011.

[12] M. Last, Y. Klein, A. Kandel, and A. K. Knowledge
discovery in time series databases. IEEE Transactions
on Systems, Man, and Cybernetics, 31:160–169, 2001.

[13] S.-K. Lee and B. R. Moon. A new modular genetic
programming for finding attractive technical patterns
in stock markets. Genetic and Evolutionary
Computation Conference, pages 1219–1226, 2010.

[14] P. Lipinski. ECGA vs. BOA in discovering stock
market trading experts. Genetic and Evolutionary
Computation Conference, pages 531–538, 2007.

[15] T. V. Luong, N. Melab, and E.-G. Talbi. Parallel local
search on GPU. Research Report RR-6915, 2009.

[16] T. V. Luong, N. Melab, and E.-G. Talbi. GPU-based
island model for evolutionary algorithms. Genetic and
Evolutionary Computation Conference, pages
1089–1096, 2010.

[17] O. Maitre, L. A. Baumes, N. Lachiche, A. Corma, and
P. Collet. Coarse grain parallelization of evolutionary
algorithms on GPGPU cards with EASEA. Genetic
and Evolutionary Computation Conference, pages
1403–1410, 2009.

[18] L. Mussi, Y. S. Nashed, and S. Cagnoni. GPU-based
asynchronous particle swarm optimization. Genetic
and Evolutionary Computation Conference, pages
1555–1562, 12-16 July 2011.

[19] P. Pospichal, J. Jaros, and J. Schwarz. Parallel genetic
algorithm on the CUDA architecture. Applications of
Evolutionary Computation, pages 442–451, 2010.

[20] J.-Y. Potvin, P. Soriano, and M. Vallée. Generating
trading rules on the stock markets with genetic
programming. Computers and Operations Research, 31
(7):1033–1047, June 2004.

[21] R. J. Povinelli. Using genetic algorithms to find
temporal patterns indicative of time series events.
GECCO 2000 Workshop: Data Mining with
Evolutionary Algorithms, pages 80–84, 2000.

[22] P. Przymus and K. Kaczmarski. Time series queries
processing with GPU support. 17th East European
Conference on Advances in Databases and Information
Systems, pages 53–60, 2013.

[23] A. K. Qin, F. Raimondo, F. Forbes, and Y.-S. Ong.
An improved CUDA-based implementation of
differential evolution on GPU. Genetic and
Evolutionary Computation Conference, pages 991–998,
2012.

[24] K. Rocki and R. Suda. Accelerating 2-opt and 3-opt
local search using GPU in the travelling salesman
problem. International Conference on High
Performance Computing and Simulation, pages
489–495, 2012.

[25] S. Shao, X. Liu, M. Zhou, J. Zhan, X. Liu, Y. Chu,
and H. Chen. A GPU-based implementation of an
enhanced GEP algorithm. T. Soule and J. H. Moore,
editors, Genetic and Evolutionary Computation
Conference, pages 999–1006, 2012.

[26] S. Solomon, P. Thulasiraman, and R. K. Thulasiram.
Collaborative multi-swarm PSO for task matching
using graphics processing units. Genetic and
Evolutionary Computation Conference, pages
1563–1570, 2011.

[27] K. C. Tan, Q. Yu, and T. H. Lee. A distributed
evolutionary classifier for knowledge discovery in data
mining. IEEE Transactions on Systems, Man, and
Cybernetics, Part C, 35(2):131–142, 2005.

[28] P. Vidal and E. Alba. A multi-GPU implementation
of a cellular genetic algorithm. IEEE Congress on
Evolutionary Computation, pages 1–7, 2010.

[29] V. Volkov. Better performance at lower occupancy.
GPU Technology Conference, 2010.

[30] S. Zhang and Z. He. Implementation of parallel
genetic algorithm based on CUDA. Advances in
Computation and Intelligence, volume 5821 of Lecture
Notes in Computer Science, pages 24–30, 2009.

1166

